Design-hiding techniques are a central piece of academic and industrial efforts to protect electronic circuits from being reverse-engineered. However, these techniques have lacked a principled foundation to guide their design and security evaluation, leading to a long line of broken schemes. In this paper, we begin to lay this missing foundation.

360 Mobile Vision - 360mobilevision.com North & South Carolina Security products and Systems Installations for Commercial and Residential - $55 Hourly Rate. ACCESS CONTROL, INTRUSION ALARM, ACCESS CONTROLLED GATES, INTERCOMS AND CCTV INSTALL OR REPAIR 360 Mobile Vision - 360mobilevision.com is committed to excellence in every aspect of our business. We uphold a standard of integrity bound by fairness, honesty and personal responsibility. Our distinction is the quality of service we bring to our customers. Accurate knowledge of our trade combined with ability is what makes us true professionals. Above all, we are watchful of our customers interests, and make their concerns the basis of our business.

We establish formal syntax for design-hiding (DH) schemes, a cryptographic primitive that encompasses all known design-stage methods to hide the circuit that is handed to a (potentially adversarial) foundry for fabrication. We give two security notions for this primitive: function recovery (FR) and key recovery (KR). The former is the ostensible goal of design-hiding methods to prevent reverse-engineering the functionality of the circuit, but most prior work has focused on the latter. We then present the first provably (FR,KR)-secure DH scheme, $OneChaff_{hd}$. A side-benefit of our security proof is a framework for analyzing a broad class of new DH schemes. We finish by unpacking our main security result, to provide parameter-setting guidance.

By admin