A weak pseudorandom function (weak PRF) is one of the most important cryptographic primitives for its efficiency although it has lower security than a standard PRF.

360 Mobile Vision - 360mobilevision.com North & South Carolina Security products and Systems Installations for Commercial and Residential - $55 Hourly Rate. ACCESS CONTROL, INTRUSION ALARM, ACCESS CONTROLLED GATES, INTERCOMS AND CCTV INSTALL OR REPAIR 360 Mobile Vision - 360mobilevision.com is committed to excellence in every aspect of our business. We uphold a standard of integrity bound by fairness, honesty and personal responsibility. Our distinction is the quality of service we bring to our customers. Accurate knowledge of our trade combined with ability is what makes us true professionals. Above all, we are watchful of our customers interests, and make their concerns the basis of our business.

Recently, Boneh et al. (TCC’18) introduced two types of new weak PRF candidates, which are called a basic Mod-2/Mod-3 and alternative Mod-2/Mod-3 weak PRF.
Both use the mixture of linear computations defined on different small moduli to satisfy conceptual simplicity, low complexity (depth-2 ${sf ACC^0}$) and MPC friendliness. In fact, the new candidates are conjectured to be exponentially secure against any adversary that allows exponentially many samples, and a basic Mod-2/Mod-3 weak PRF is the only candidate that satisfies all features above. However, none of the direct attacks which focus on basic and alternative Mod-2/Mod-3 weak PRFs use their own structures.

In this paper, we investigate weak PRFs from two perspectives; attacks, fixes.
We first propose direct attacks for an alternative Mod-2/Mod-3 weak PRF and a basic Mod-2/Mod-3 weak PRF when a circulant matrix is used as a secret key.

For an alternative Mod-2/Mod-3 weak PRF, we prove that the adversary’s advantage is at least $2^{-0.105n}$, where $n$ is the size of the input space of the weak PRF. Similarly, we show that the advantage of our heuristic attack to the weak PRF with a circulant matrix key is larger than $2^{-0.21n}$, which is contrary to the previous expectation that `structured secret key’ does not affect the security of a weak PRF. Thus, for an optimistic parameter choice $n = 2lambda$ for the security parameter $lambda$, parameters should be increased to preserve $lambda$-bit security when an adversary obtains exponentially many samples.

Next, we suggest a simple method for repairing two weak PRFs affected by our attack while preserving the

By admin