The Schnorr signature scheme is an efficient digital signature scheme with short signature lengths, i.e., $4k$-bit signatures for $k$ bits of security. A Schnorr signature $sigma$ over a group of size $papprox 2^{2k}$ consists of a tuple $(s,e)$, where $e in {0,1}^{2k}$ is a hash output and $sin mathbb{Z}_p$ must be computed using the secret key. While the hash output $e$ requires $2k$ bits to encode, Schnorr proposed that it might be possible to truncate the hash value without adversely impacting security.

360 Mobile Vision - North & South Carolina Security products and Systems Installations for Commercial and Residential - $55 Hourly Rate. ACCESS CONTROL, INTRUSION ALARM, ACCESS CONTROLLED GATES, INTERCOMS AND CCTV INSTALL OR REPAIR 360 Mobile Vision - is committed to excellence in every aspect of our business. We uphold a standard of integrity bound by fairness, honesty and personal responsibility. Our distinction is the quality of service we bring to our customers. Accurate knowledge of our trade combined with ability is what makes us true professionals. Above all, we are watchful of our customers interests, and make their concerns the basis of our business.

In this paper, we prove that emph{short} Schnorr signatures of length $3k$ bits provide $k$ bits of multi-user security in the (Shoup’s) generic group model and the programmable random oracle model. We further analyze the multi-user security of key-prefixed short Schnorr signatures against preprocessing attacks, showing that it is possible to obtain secure signatures of length $3k + log S + log N$ bits. Here, $N$ denotes the number of users and $S$ denotes the size of the hint generated by our preprocessing attacker, e.g., if $S=2^{k/2}$, then we would obtain secure $3.75k$-bit signatures for groups of up to $N leq 2^{k/4}$ users.

Our techniques easily generalize to several other Fiat-Shamir-based signature schemes, allowing us to establish analogous results for Chaum-Pedersen signatures and Katz-Wang signatures. As a building block, we also analyze the $1$-out-of-$N$ discrete-log problem in the generic group model, with and without preprocessing

By admin