Secure Multi-party Computation (MPC) allows to securely compute on private data. To make MPC practical, logic synthesis can be used to automatically translate a description of the function to be computed securely into optimized and error-free boolean circuits. TinyGMW (Demmler et al., CCS’15) used industry-grade hardware synthesis tools (DC, Yosys) to generate depth-optimized circuits for MPC. To evaluate their optimized circuits, they used the ABY framework (Demmler et al., NDSS’15) for secure two-party computation. The recent ABY2.0 framework (Patra et al., USENIX Security’21) presented round-efficient constructions using multi-input AND gates and improved over ABY by at least 6x in online communication for 4-input AND gate evaluation.

360 Mobile Vision - 360mobilevision.com North & South Carolina Security products and Systems Installations for Commercial and Residential - $55 Hourly Rate. ACCESS CONTROL, INTRUSION ALARM, ACCESS CONTROLLED GATES, INTERCOMS AND CCTV INSTALL OR REPAIR 360 Mobile Vision - 360mobilevision.com is committed to excellence in every aspect of our business. We uphold a standard of integrity bound by fairness, honesty and personal responsibility. Our distinction is the quality of service we bring to our customers. Accurate knowledge of our trade combined with ability is what makes us true professionals. Above all, we are watchful of our customers interests, and make their concerns the basis of our business.

In this work, we propose SynCirc, an efficient hardware synthesis framework designed for MPC applications. Our framework is based on Verilog and the open-source tool Yosys-ABC. It provides custom libraries and new constraints that accommodate multi-input AND gates. With this, we improve over TinyGMW by up to 3x in multiplicative depth with a corresponding improvement in online round complexity. Moreover, we provide efficient realizations of several new building blocks including comparison, multiplexers, and equality check. For these building blocks, we achieve improvements in multiplicative depth/online rounds between 22.3% and 66.7%. With these improvements, our framework makes multi-round MPC better-suited for high-latency networks such as the Internet. With respect to the look-up table based approach of Dessouky et al (NDSS’17), our framework improves the online communication by 1.3x – 18x.

By admin