A natural and recurring idea in the knapsack/lattice cryptography literature is to start from a lattice with remarkable decoding capability as your private key, and hide it somehow to make a public key. This is also how the code-based encryption scheme of McEliece (1978) proceeds.

360 Mobile Vision - 360mobilevision.com North & South Carolina Security products and Systems Installations for Commercial and Residential - $55 Hourly Rate. ACCESS CONTROL, INTRUSION ALARM, ACCESS CONTROLLED GATES, INTERCOMS AND CCTV INSTALL OR REPAIR 360 Mobile Vision - 360mobilevision.com is committed to excellence in every aspect of our business. We uphold a standard of integrity bound by fairness, honesty and personal responsibility. Our distinction is the quality of service we bring to our customers. Accurate knowledge of our trade combined with ability is what makes us true professionals. Above all, we are watchful of our customers interests, and make their concerns the basis of our business.

This idea has never worked out very well for lattices: ad-hoc approaches have been proposed, but they have been subject to ad-hoc attacks, using tricks beyond lattice reduction algorithms.
On the other hand the framework offered by the Short Integer Solution (SIS) and Learning With Errors (LWE) problems, while convenient and well founded, remains frustrating from a coding perspective: the underlying decoding algorithms are rather trivial, with poor decoding performance.

In this work, we provide generic realizations of this natural idea (independently of the chosen remarkable lattice) by basing cryptography on the lattice isomorphism problem (LIP). More specifically, we provide:

– a worst-case to average-case reduction for search-LIP and distinguish-LIP within an isomorphism class, by extending techniques of Haviv and Regev (SODA 2014).
– a zero-knowledge proof of knowledge (ZKPoK) of an isomorphism. This implies an identification scheme based on search-LIP.
– a key encapsulation mechanism (KEM) scheme and a hash-then-sign signature scheme, both based on distinguish-LIP.

The purpose of this approach is for remarkable lattices to improve the security and performance of lattice-based cryptography. For example, decoding within poly-logarithmic factor from Minkowski’s bound in a remarkable lattice would lead to a KEM resisting lattice attacks down to poly-logarithmic approximation factor, provided that the dual lattice is also close to Minkowski’s bound. Recent works have indeed reached such decoders for certain lattices (Chor-Rivest, Barnes-Sloan), but these do not perfectly fit our need as their duals have poor minimal distance.

By admin