Researchers Find Way To Shrink a VR Headset Down To Normal Glasses Size
Researchers from Stanford University and Nvidia have teamed up to help develop VR glasses that look a lot more like regular spectacles. PC Gamer reports: “A major barrier to widespread adoption of VR technology, however, is the bulky form factor of existing VR displays and the discomfort associated with that,” the research paper published at Siggraph 2022 says. These aptly named “Holographic Glasses” can deliver a full-colour 3D holographic image using optics that are only 2.5mm thick. Compared to the traditional way a VR headset works, in which a lens magnifies a smaller display some distance away from it, shrinking all the prerequisite parts down to such a small size is quite the spectacular step forward for VR.

360 Mobile Vision - 360mobilevision.com North & South Carolina Security products and Systems Installations for Commercial and Residential - $55 Hourly Rate. ACCESS CONTROL, INTRUSION ALARM, ACCESS CONTROLLED GATES, INTERCOMS AND CCTV INSTALL OR REPAIR 360 Mobile Vision - 360mobilevision.com is committed to excellence in every aspect of our business. We uphold a standard of integrity bound by fairness, honesty and personal responsibility. Our distinction is the quality of service we bring to our customers. Accurate knowledge of our trade combined with ability is what makes us true professionals. Above all, we are watchful of our customers interests, and make their concerns the basis of our business.

The Holographic Glasses prototype uses pancake lenses, which is a concept that has been thrown around a couple of times in the past few years. These pancake lenses not only allow for a much smaller profile but reportedly they have a few other benefits, too: the resolution they can offer is said to be unlimited, meaning you can crank up the resolution for VR headsets, and they offer a much wider field of view at up to 200 degrees. […] The research paper lists the glasses as such: “a coherent light source that is coupled into a pupil-replicating waveguide, which provides the illumination for a phase-only SLM that is mounted on the waveguide in front of the user’s eye. This SLM creates a small image behind the device, which is magnified by a thin geometric phase (GP) lens.”

Though, it’s very much a promise of what’s to come more than an immediately shippable product today. There are some limitations: while there’s scope to have a much higher FOV than current generation VR headsets, this particular wearable prototype only offered an FOV of 22.8 degrees. The benchtop prototype offered even less, at only 16.1 degrees. “[The FOV] is far smaller than commercially available VR/AR displays. However, the FOV was mainly limited by the size of the available SLM and the focal length of the GP lens, both of which could be improved with different components,” the researchers say. Another limitation is the likely requirement for a very accurate measurement of the user’s pupil, which won’t be easy without a well-thought-out design. It would be possible to use an infrared gaze tracker to do this, the researchers note, but you’d need to be able to track the wearer’s pupil size constantly as they will adjust often to different light conditions while using the glasses.

Read more of this story at Slashdot.

By admin